Model 590光學(xué)監(jiān)視器 Model 590 Optical Monitor
DUN光學(xué)監(jiān)視器使鍍膜者對光學(xué)薄膜沉積進(jìn)行精確控制,減少了工藝誤差,提高了鍍膜產(chǎn)量。我們的旗艦系統(tǒng)590型,被認(rèn)為是具有無與倫比的魯棒性 和易用性.
我們還推出了一套完整的現(xiàn)成配件來完成安裝工作.我們的工程人員和內(nèi)部制造也可根據(jù)您的要求提供自定義解決方案,以滿足您的確切需求。
Model 590光學(xué)監(jiān)視器 Model 590 Optical Monitor為今天的精密薄膜涂層提供了所需的最高精度。晶體監(jiān)視器,通過設(shè)計,只測量一個涂層的質(zhì)量,而不能檢測到由于多個工藝變量之一的變化而引起的層密度的變化。如果不被捕捉到,層密度的變化會導(dǎo)致光學(xué)厚度的變化,這會導(dǎo)致性能急劇下降,并可能失去運行和收入。
精密層終端
減少過程誤差
350-2500 nm波長范圍
優(yōu)越的Backgorund噪聲抑制
反射或傳輸方式的作品
5年動態(tài)范圍
條帶記錄儀模擬輸出
USB接口
現(xiàn)場驗證設(shè)計
備選方案:
用于連續(xù)波長選擇的單色計。
光纖輸入/輸出
雙接收器
光學(xué)監(jiān)控的優(yōu)勢?
Model 590光學(xué)監(jiān)視器 Model 590 Optical Monitor為今天的精密薄膜涂層提供了所需的最高精度。晶體監(jiān)視器,通過設(shè)計,只測量一個涂層的質(zhì)量,而不能檢測到由于多個工藝變量之一的變化而引起的層密度的變化。如果不被捕捉到,層密度的變化會導(dǎo)致光學(xué)厚度的變化,這會導(dǎo)致性能急劇下降,并可能失去運行和收入。
另一方面,光學(xué)監(jiān)視器通過測量涂層的反射率或透射率,對每一層的光學(xué)性能提供連續(xù)的實時監(jiān)測。這種測量與已知的各層光學(xué)厚度之間的關(guān)系進(jìn)行了比較,以便能夠?qū)崿F(xiàn)每一層的精確終止。
圖1.0下面顯示了一個典型的監(jiān)測芯片反射率與厚度的關(guān)系圖,這是由一個涂層設(shè)計軟件包生成的。由實心垂直條所指出的圖層終止點表示每一層的端點。當(dāng)590光學(xué)監(jiān)視器讀出達(dá)到這些點時,操作者終止該層的沉積并推進(jìn)到下一層。
Precision Layer Termination
Reduced Process Error
350-2500nm Wavelength Range
Superior Backgorund Noise Suppression
Works in Reflection or Transmission Modes
5 Decade Dynamic Range
Analog Output for Stripchart Recorder
USB Interface
Field-proven Design
Options:
Monochrometer for continuous wavelength selection.
Fiber Optic Input / Outputs
Dual Receivers
Advantages of Optical Monitoring?
Optical Monitoring provides the highest accuracy needed for today’s precision thin film coatings. Crystal monitors, by design, only measure the mass of a coating layer and cannot detect changes in the layer density caused by a variations in one of the many process variables. If not caught, a change in layer density results in a variation of the optical thickness which can lead to dramatic performance reductions and possible lost runs and revenue.
Optical monitors, on the other hand, provide continuous real-time monitoring of the optical performance of each layer by measuring the reflectance or transmission of the coating throughout the coating run. This measurement is compared against a well known relationship for the optical thickness of each layer so that precise termination of each layer can be achieved.
Figure 1.0 below shows a typical plot of monitor chip reflectance vs. thickness generated by a coating design software package. The layer termination points noted by the solid vertical bars indicate the end points of each layer. When the 590 Optical Monitor readout reaches these points, the operator terminates that layer deposition and advances to the next layer.
Optical Monitoring provides the highest accuracy needed for today’s precision thin film coatings. Crystal monitors, by design, only measure the mass of a coating layer and cannot detect changes in the layer density caused by a variations in one of the many process variables. If not caught, a change in layer density results in a variation of the optical thickness which can lead to dramatic performance reductions and possible lost runs and revenue.